

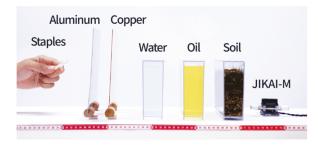
JIKAI Business in the Metal Detector Market

NOVEMBER 2025

1. JIKAI SCAN Product Overviews

Born from Japan's cutting-edge technology, the next-generation magnetic field sensor "JIKAI" achieves ultra-high precision, high sensitivity, and low noise performance that surpass the limits of conventional sensors.

Despite its compact size and low cost, it can accurately detect buried or submerged metals and resources, enabling reliable magnetic field measurements even in environments where such measurements were previously difficult.


Sensitivity more than 10 times higher than conventional magnetic field sensors Fluxgate Type 220pT Approximately 11to 22 Times Higher Sensitivity JIKAI-M 10-20pT

a very small unit of magnetic field. Smaller values indicate a more sensitive sensor.

In comparative tests, JIKAI detected magnetic fields in the range of 10-20 pT, whereas conventional fluxgate sensors registered 220 pT. Since smaller pT values indicate higher sensitivity, the results demonstrate that JIKAI can detect magnetic field variations with more than ten times the performance of conventional sensors.

Detection beyond distance and obstacles

With a staple positioned about 1.6 feet away and obstacles such as aluminum, copper, water, oil, and soil inserted between the sensor and the target, JIKAI successfully measured the magnetic field. This demonstrates its ability to reliably detect weak magnetic fields at long distances, even in the presence of intervening materials.

1. JIKAI SCAN Product Overviews

01 JIKAI-M

Compact × Low Power × Long-Range High-Precision Measurement

JIKAI-M achieves approximately ten times higher sensitivity than conventional fluxgate sensors, the mainstream type. With picotesla-level sensitivity, it can detect extremely subtle magnetic variations.

Core medium (magnetic material) Amorphous ribbon

Measurement principle JIKAI method

Features and Benefits

High Noise Immunity Acquires high-accuracy, highly reliable data.

Drone-Mountable

Supporting surveys in the air, underwater, and haz-

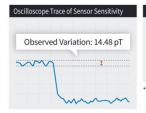
Low Power Consumption Enables long duration surveys.

High-Precision Measurement at Long Range Acquires accurate data even when close approach is difficult.

Primary Applications and Domains

Areas Inaccessible to People Disaster zones, dangerous re-

Hazardous Object Detection Remote detection of landmines and unexploded ordnance.

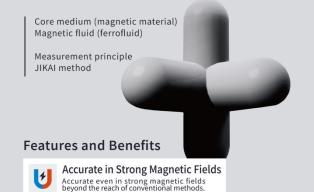


Underwater Exploration Surveys of shipwrecks, subsea cables, and seafloor resources.

Comparison with Other Products

JIKAI-M Detection Sensitivity

In comparative tests against fluxgate-type sensors, JIKAI-M demonstrated approximately 11 to 22 times higher sensitivity, enabling the detection of extremely subtle magnetic changes and ensuring accurate measurements even at greater stand-off distances.



*pT stands for picotesla, a very small unit of magnetic field. Smaller values indicate a more

02 JIKAI-F

A next-generation magnetic field sensor that maintains high accuracy even in a strong magnetic field

JIKAI-F is an innovative magnetic field sensor that employs a magnetic fluid core. It overcomes the challenges of conventional fluxgate and optically pumped methods, remaining free from magnetization even in strong magnetic fields and enabling stable measurements.

Primary Applications and Domains

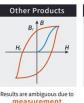
Unknown Magnetic Environments

Outer space, Mars, and more.

High-Field Sites

Power transmission facilities, fac-tories, railways, steelworks, and

Areas Inaccessible to People Disaster zones, dangerous regions, deep sea, and more.



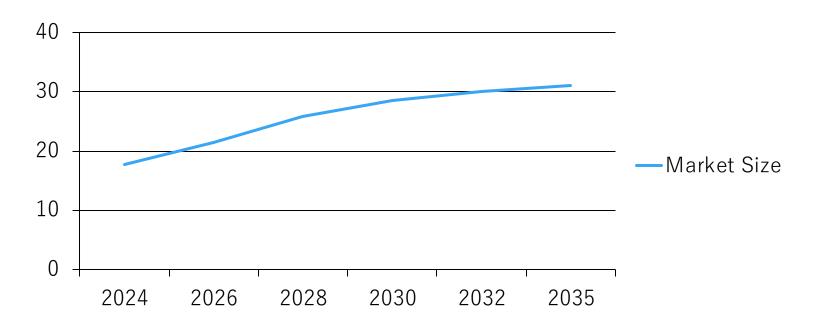
Geomagnetism Geomagnetic measurements, earthquake precursor studies,

Comparison with Other Products

Accuracy and Consistency of JIKAI-F Measurements

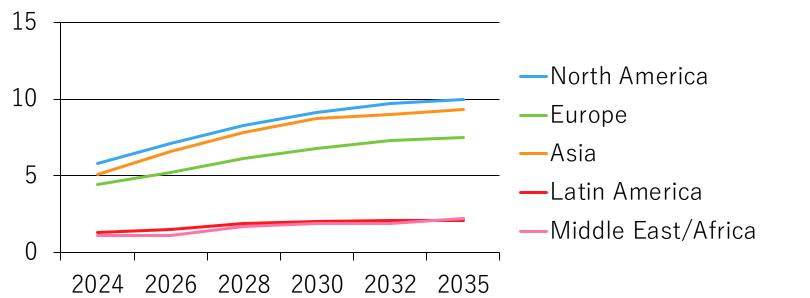
When the magnetic field strength changes, conventional sensors produce inconsistent readings. This phenomenon, known as hysteresis, causes measurement errors. In contrast, JIKAI-F provides stable and accurate measurements regardless of changes in magnetic field strength

deviations

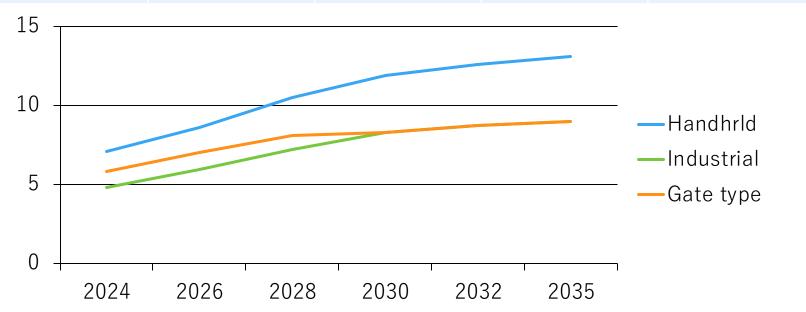

Results are accurate because no measurement

deviations occur

2. World Market Forecast


Year	Market Size
2024	17.7
2026	21.5
2028	25.8
2030	28.5
2032	30.0
2035	31.1

3. Global Market Breakdown by Region


Year	North America	Europe	Asia	Latin America	Middle East /Africa	Total
2024	5.8	4.4	5.1	1.3	1.1	17.7
2026	7.1	5.2	6.6	1.5	1.1	21.5
2028	8.3	6.1	7.8	1.9	1.7	25.8
2030	9.1	6.8	8.7	2.0	1.9	28.5
2032	9.7	7.3	9.0	2.1	1.9	30.0
2035	10.0	7.5	9.3	2.1	2.2	31.1

4. Market forecast by type

Year	Handheld	Industrial	Gate type	Total
2024	7.1	4.8	5.8	17.7
2026	8.6	5.9	7.0	21.5
2028	10.5	7.2	8.1	25.8
2030	11.9	8.3	8.3	28.5
2032	12.6	8.7	8.7	30.0
2035	13.1	9.0	9.0	31.1

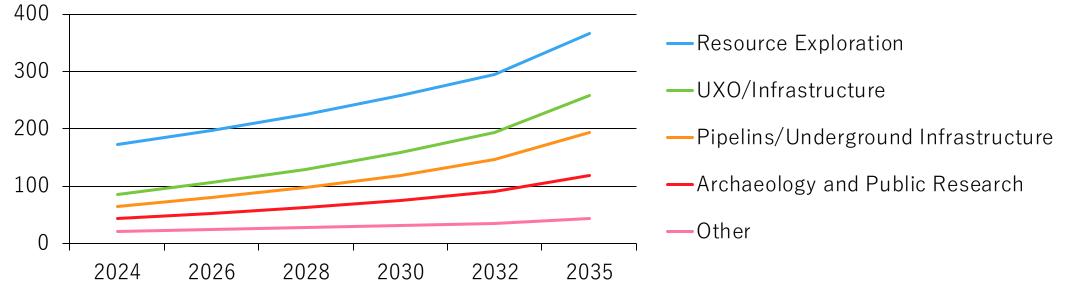
5. World Market Share of Drone-mounted Magnetic Field Sensors

Year	Drone-mounted Magnetic Field Sensors	Metal Detector Market	Share (%)	
2024	430	1,770	24.3	
2026	508.1	2,150	23.6	
2028	600.3	2,580	23.3	
2030	709.3	2,850	24.9	
2032	838.1	3,000	27.9	
2035	1,076.4	3,110	34.6	

6. Breakdown of Drone-mounted Magnetic Field Sensor World Market by Region

Unit: million USD

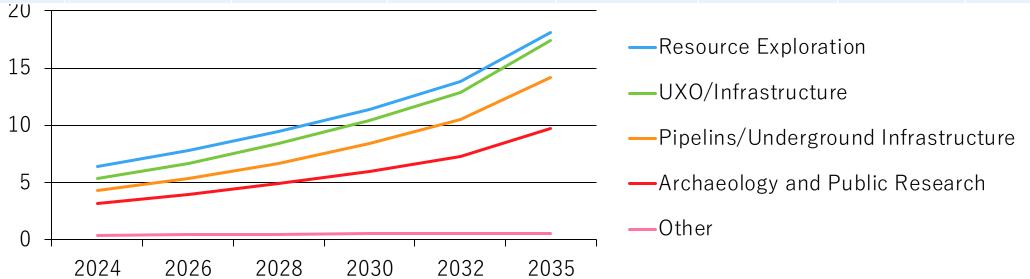
Year	North America	Europe	Asia	Latin America	Middle East /Africa	Total
2024	146.2	111.8	120.4	25.8	25.8	430
2026	169.7	131.1	146.3	30.5	30.5	508.1
2028	196.9	153.7	177.7	36.0	36.0	600.3
2030	228.4	180.2	215.6	42.6	42.6	709.3
2032	264.8	211.2	261.5	50.3	50.3	838.1
2035	333.7	269.1	344.5	64.6	64.6	1,076.4



7. Breakdown of Drone-mounted Magnetic Field Sensor Market (Worldwide)

Unit: million USD

Resource exploration	UXO and infrastructure	Pipelines/undergro und infrastructure	Archaeology and public research	Academic and geomagnetic observations	Other	Total
172.0	86.0	64.5	43.0	43.0	21.5	430
197.1	105.7	79.3	51.8	49.8	24.4	508.1
225.7	129.7	97.3	62.4	57.6	27.6	600.3
258.2	158.9	119.2	75.2	66.7	31.2	709.3
295.0	194.4	145.8	90.5	77.1	35.2	838.1
366.0	258.3	193.8	118.4	96.9	43.1	1,076.4
	exploration 172.0 197.1 225.7 258.2 295.0	exploration infrastructure 172.0 86.0 197.1 105.7 225.7 129.7 258.2 158.9 295.0 194.4	exploration infrastructure und infrastructure 172.0 86.0 64.5 197.1 105.7 79.3 225.7 129.7 97.3 258.2 158.9 119.2 295.0 194.4 145.8	Resource exploration OAO and infrastructure Fipelines/undergro und infrastructure and public research 172.0 86.0 64.5 43.0 197.1 105.7 79.3 51.8 225.7 129.7 97.3 62.4 258.2 158.9 119.2 75.2 295.0 194.4 145.8 90.5	Resource exploration UXO and infrastructure Pipelines/underground infrastructure and public research geomagnetic observations 172.0 86.0 64.5 43.0 43.0 197.1 105.7 79.3 51.8 49.8 225.7 129.7 97.3 62.4 57.6 258.2 158.9 119.2 75.2 66.7 295.0 194.4 145.8 90.5 77.1	Resource exploration UXO and infrastructure Pipelines/undergro und infrastructure and public research geomagnetic observations Other 172.0 86.0 64.5 43.0 43.0 21.5 197.1 105.7 79.3 51.8 49.8 24.4 225.7 129.7 97.3 62.4 57.6 27.6 258.2 158.9 119.2 75.2 66.7 31.2 295.0 194.4 145.8 90.5 77.1 35.2



8. Breakdown of Drone-mounted Magnetic Field Sensor Market (Domestic)

Unit: million USD

Year	Resource exploration	UXO and infrastructure	Pipelines/undergr ound infrastructure	Archaeology and public research	Academic and geomagnetic observations	Other	Total
2024	6.4	5.4	4.3	3.2	1.7	0.4	21.5
2026	7.8	6.7	5.4	4.0	2.1	0.5	26.4
2028	9.5	8.4	6.7	4.9	2.5	0.5	32.4
2030	11.4	10.4	8.4	6.0	2.9	0.6	39.7
2032	13.8	12.9	10.5	7.3	3.5	0.6	48.6
2035	18.1	17.4	14.2	9.7	4.5	0.6	64.6

9. Growth and Risk Factors

Growth Factors

Increasing security demand (airports, public facilities, events)

Demand for quality control in industrial applications (food and pharmaceuticals)

Improved detection accuracy through Al and high sensitivity

Tighter regulations and increasing standardization

Infrastructure development and widespread adoption in emerging countries

Risk Factors

High initial and maintenance costs

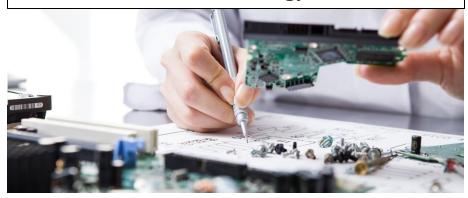
Competition with alternative technologies such as X-ray inspection

Risk of policy and budget fluctuations

Price competition due to market saturation

10. Trends in Japan and Asia

The non-destructive testing equipment market is expanding. Metal detectors are expected to grow as part of this.


Industrialization and infrastructure development in emerging Asian countries are driving growth

Expanding urban security demand (events, stations, facilities, etc.)

Domestic manufacturers differentiate themselves through high precision and miniaturization technology

11.Summary

The metal detector market is supported by a wide range of uses, including security, industry, and leisure, and is expected to continue growing at an average annual rate of 5-10%.

- ◆Growth has been particularly notable in the handheld and industrial use sectors, and they are expected to become more widespread in Japan and other Asian markets.
- ◆Attention must be paid to price competition, alternative technologies, and policy trends, as technological innovation and added value will be the keys to sustainable growth.

(About this Disclaimer)

This document contains forward-looking statements based on current views and assumptions as of today.

These statements involve known and unknown risks and uncertainties, and actual results may differ materially from those projected.

In addition, this document has been prepared as a simulation, and the information contained herein does not guarantee its accuracy or completeness.

None of the information in this document is intended to form the basis of any investment decision, nor is it intended to constitute any specific recommendation.

We accept no responsibility whatsoever for any errors, omissions, or inaccuracies in the information contained in this document, nor for any direct or indirect loss or damage of any kind arising directly or indirectly from any actions taken based on such information.